




patients

attention deficit<sup>9</sup>

severity.

## **GENETICS OF MIGRAINE**

**Genetic aspects and latest findings** 

**Aarno Palotie** 









experience

AT BROAD INSTITUTE

www.fimm.fi





isordersinattentio

attention deficit<sup>genuine</sup>

severity treatmen

indution ep

sorde

patients



## **Genetics Strategy:**

Uncover disease mechanisms







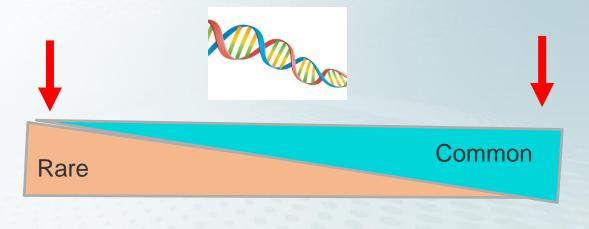
STANLEY CENTER

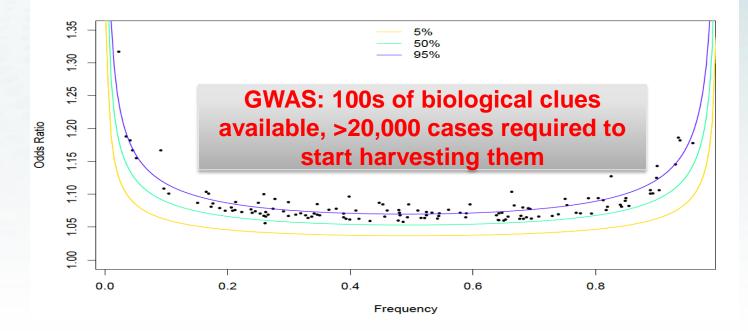
AT BROAD INSTITUTE

www.fimm.fi

## Disclousures

Chief Scientific officer for the FInnGen project that includes 13 pharma companies as members



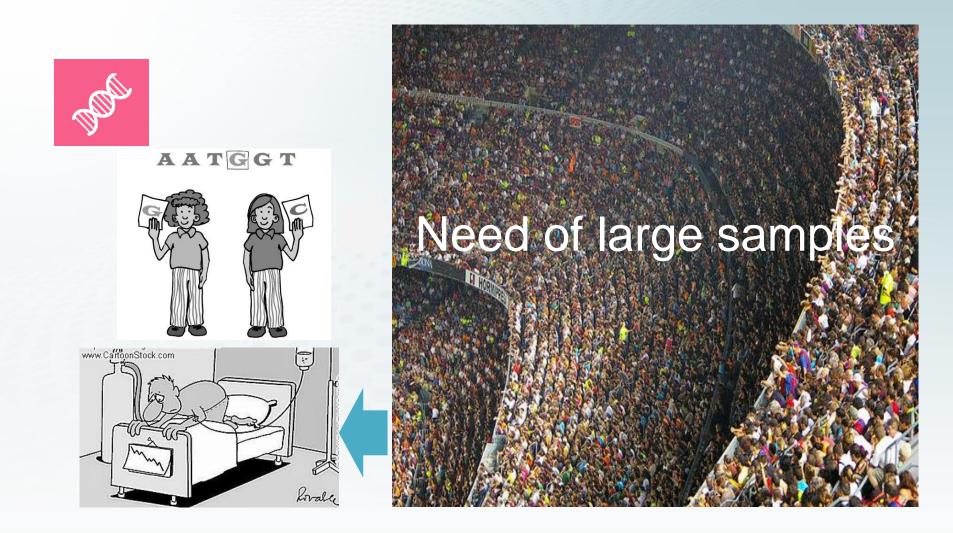


 Genetics is about generating a knowledgebase for biological insight and therapeutic development

- To that end, our genetics strategy is aimed at <u>definitively</u> establishing
  - specific genes and variants as associated,
  - interpreting their specific phenotypic consequence,
  - Glean insight about the cells and molecular pathways involved in order to seed and inform the design of experiments

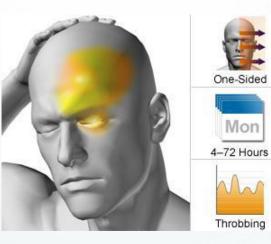


## **Common and rare variants**














## EACH GENE VARIANT HAS A SMALL EFFECT



## RARE

mages,

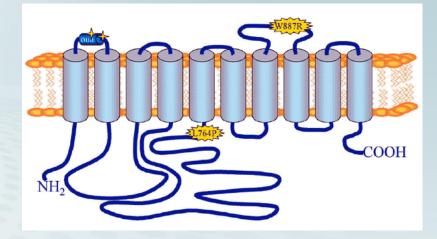
T

© 2008 Logic

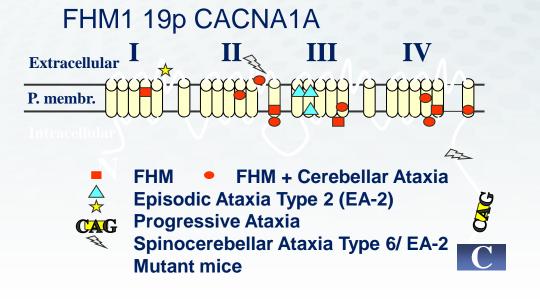


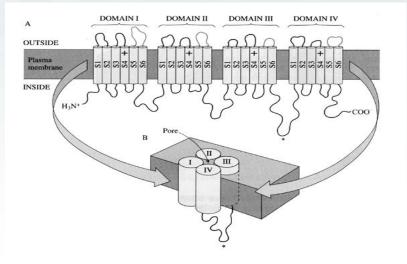


# Rare forms of migraine Familial hemiplegic migraine







# Mendelian forms of migraine


Familial hemiplegic migraine (FHM)

#### FHM2 1q ATP1A2











1-Dec-2020

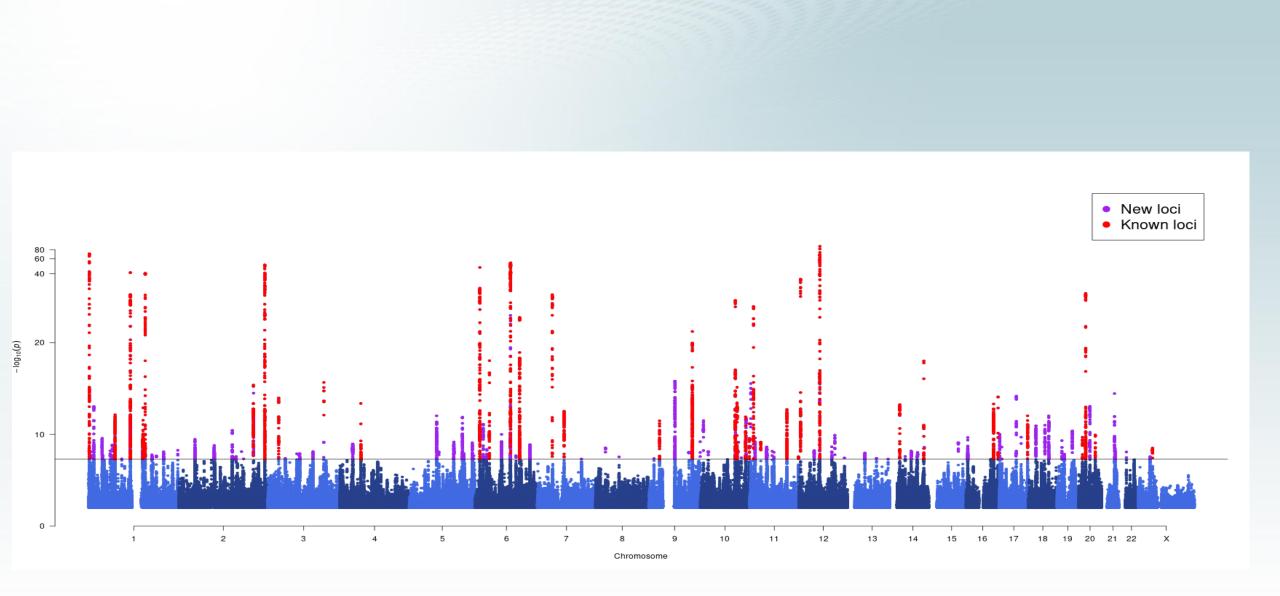
Genome-wide analysis of 102,084 cases identifies 123 migraine risk loci and subtypespecific risk alleles



Heidi Hautakangas Matti Pirinen

Hautakangas et al. Nature Genetics in press

© FIMM - Institiute for Molecular Medicine Finland

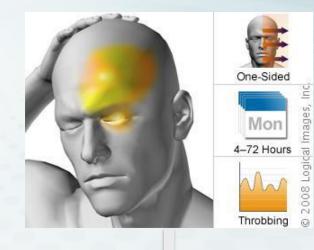

www.fimm.

| Abbreviation | Full Name                              | Ethnicity              | Cases  | Controls | Case % | Migraine Definition                                            |
|--------------|----------------------------------------|------------------------|--------|----------|--------|----------------------------------------------------------------|
| IHGC2016*    | Gormley et al. 2016 (no<br>23andMe)    | European descent       | 29,209 | 172,931  | 14.4   | Self-reported and ICHD-II                                      |
| 23andMe      | 23andMe, Inc.<br>(23andMe.com)         | European descent       | 53,109 | 230,876  | 18.7   | Self-reported                                                  |
| UKBB         | UK <u>Biobank</u><br>(ukbiobank.ac.uk) | European, British      | 10,881 | 330,170  | 3.2    | Self-reported                                                  |
| GeneRISK     | GeneRISK (generisk.fi)                 | European,<br>Finnish   | 1,084  | 4,857    | 18.2   | Self-reported                                                  |
| HUNT         |                                        | European,<br>Norwegian | 7,801  | 32,423   | 19.4   | Self-reported migraine or fulfilling modified ICHD-II criteria |

#### Table 1. Five migraine study collections included in the meta-analysis

\*IHGC2016 is a meta-analysis of 21 studies listed in Supplementary Table 1. Some studies of

IHGC2016 determined migraine status through clinical phenotyping while migraine status in other studies is based on self-reported information. ICHD-II = the International Classification of Headache Disorders  $2^{nd}$  edition.




123 loci: 86 new, 37 previously reported, at P < 5e-8.

FİMM

Hautakangas et al. Nature Genetics in press

## Migraine subtypes



### Migraine

- Recurrent, unilateral headache
- Pulsating pain
- 4-72 hours
- 2-3x more common in women than men
- Heritability ~ 60%
- Prevalence ~15%

### Migraine sub-types

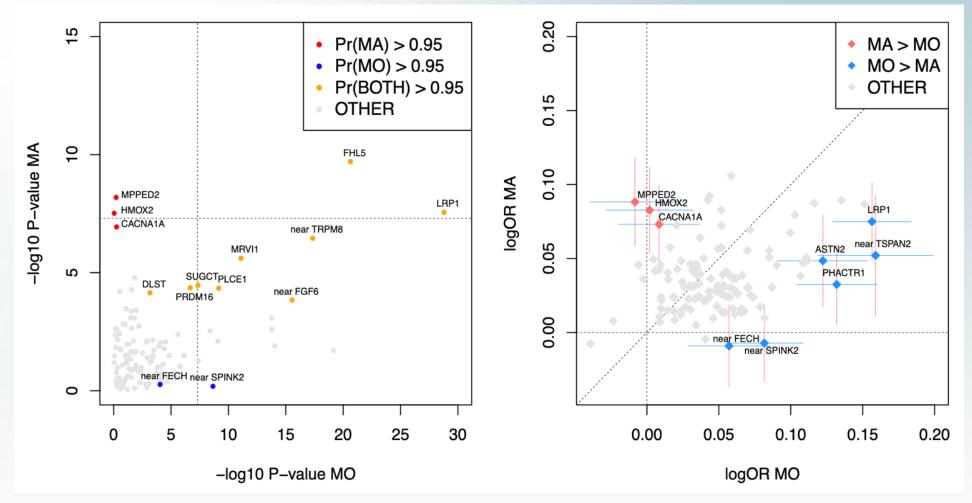






2 in 3 cases

## FİMM


Migraine *with* Aura

Migraine without Aura

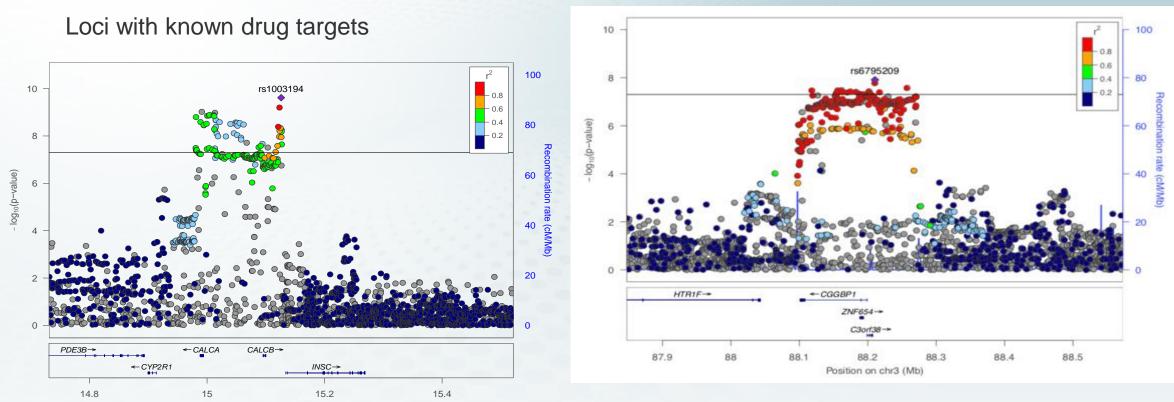
Table 2. Study collections included in MO and MA subtype analyses.

| Abbreviation | Full Name                 | Ethnicity | Subtype | Cases | Controls |
|--------------|---------------------------|-----------|---------|-------|----------|
| IHGC2016*    | Gormley et al.            | European  | МО      | 8,348 | 139,622  |
|              |                           | descent   | MA      | 6,332 | 144,883  |
| UKBB         | UK Biobank                | European, | МО      | 187   | 320,139  |
|              | (ukbiobank.ac.uk)         | British   | MA      | 1,333 | 320,139  |
| deCODE       | deCODE Genetics Inc.      | European, | МО      | 1,648 | 193,050  |
|              |                           | Icelandic | MA      | 2,297 | 209,338  |
| DBDS         | Danish Blood Donor        | European, | МО      | 3,756 | 28,045   |
|              | Study                     | Danish    | МА      | 3,938 | 28,045   |
| LUMINA       | LUMINA migraine           | European, | МО      | 1,115 | 1,445    |
|              | without aura or with aura | Dutch     | MA      | 741   | 1,447    |

#### Migraine lead variants show shared and distinct effects between the two subtypes



Lead variants stratified by migraine subtype for risk loci with minor allele frequency > 5%.


a) Axes show the negative log10 P-value of MO (X-axis) and MA (Y-axis) analyses. Symbols that are colored and annotated indicate > 95% posterior probability that a non-zero effect is present in both MO and MA (model BOTH), or that the effect is present only in MO or only in MA but not both (models MO and MA, respectively). Variants with a probability less than 95% for each of the three models are shown as gray.

b) Axes show logarithm of odds ratios for MO (X-axis) and MA (Y-axis) calculated for the migraine risk allele. The effects at variants that have been colored and annotated differ between the subtypes at significance level of 0.0004 = 0.05/123. The 95% confidence intervals are shown for the annotated variants.

MO = migraine without aura, MA = migraine with aura.

### FIMM

#### Hautakangas et al. Nature Genetics in press



Locuszoom-plots of two novel migraine loci with genes that are targets of recent migraine specific drugs.

(A) Locus containing CALCA and CALCB genes which encode CGRP, that is the target of preventive and

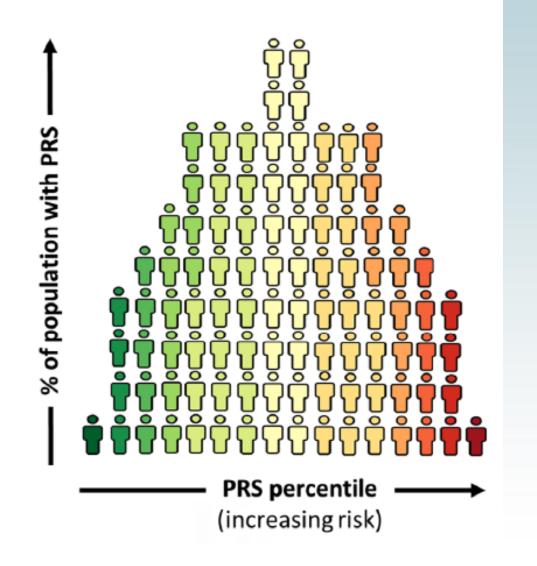
acute therapies via monoclonal antibodies and gepants.

(B) Locus containing *HTR1F* gene that encodes a seroton  $5 - HT_{1F}$  receptor that is the target of acute therapies via ditans.

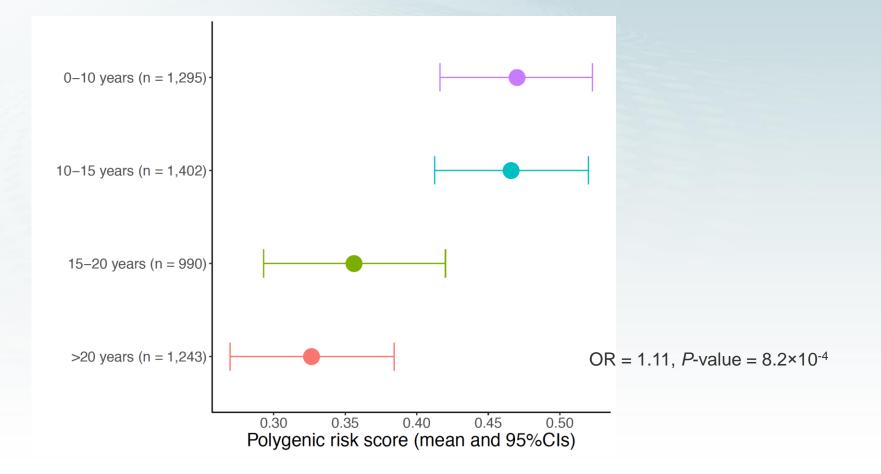
## From locus to gene to function

- > How much can we extrapolate from GWAS to functional consequences?
- > Which is the causeative gene:
  - Several genes under the locus peak, proximity is not always the best predictor of the right gene
- > Which is the causative variant:
  - Most lead variants are in regulatory regions
  - If the lead variant is a coding variant, helps to guide towards functional studies
- > Which is the relevant target tissue?

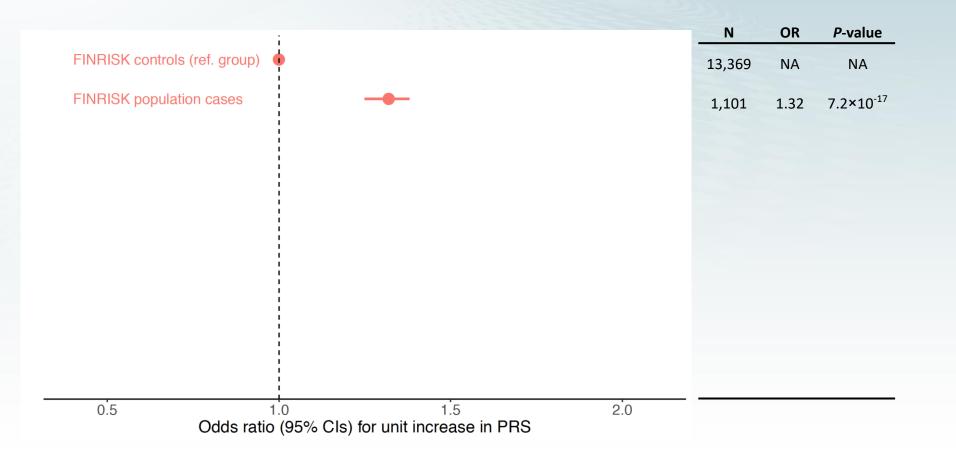
#### Table 3. LDSC-SEG results that are significant at FDR 5%.


| Tissue/Cell type and histone mark                                 | Tissue category            | P-value  | FDR   |
|-------------------------------------------------------------------|----------------------------|----------|-------|
| Multi-tissue gene expression data                                 |                            |          |       |
| Aorta                                                             | Cardiovascular             | 1.78E-04 | 0.029 |
| Tibial Artery                                                     | Cardiovascular             | 3.60E-04 | 0.029 |
| Coronary Artery                                                   | Cardiovascular             | 4.29E-04 | 0.029 |
| Gene expression data of 13 brain regions from                     | GTEX                       |          |       |
| Caudate (basal ganglia)                                           | Central nervous system     | 6.00E-04 | 0.008 |
| Multi-tissue chromatin annotation data                            |                            |          |       |
| Fetal Brain Female, H3K4me3                                       | Central nervous system     | 2.49E-05 | 0.012 |
| Brain Dorsolateral Prefrontal Cortex, H3K27ac                     | Central nervous system     | 8.43E-05 | 0.018 |
| Brain Dorsolateral Prefrontal Cortex,<br>H3K4me3                  | Central nervous system     | 1.11E-04 | 0.018 |
| Aorta, H3K4me1                                                    | Cardiovascular             | 2.57E-04 | 0.031 |
| Stomach Mucosa, H3K36me3                                          | Digestive                  | 3.36E-04 | 0.032 |
| Aorta, H3K27ac                                                    | Cardiovascular             | 4.40E-04 | 0.032 |
| Artery-Tibial ENTEX, H3K4me1                                      | Cardiovascular             | 4.53E-04 | 0.032 |
| Ganglion Eminence derived primary cultured neurospheres, H3K4me3  | Central nervous system     | 6.53E-04 | 0.04  |
| Brain Germinal Matrix, H3K4me3                                    | Central nervous system     | 8.42E-04 | 0.043 |
| Aorta ENTEX, H3K27ac                                              | Cardiovascular             | 1.11E-03 | 0.043 |
| Artery-Coronary ENTEX, H3K4me3                                    | Cardiovascular             | 1.13E-03 | 0.043 |
| Cortex derived primary cultured <u>neurospheres</u> ,<br>H3K36me3 | Central nervous system     | 1.14E-03 | 0.043 |
| Ovary, H3K27ac                                                    | Other                      | 1.15E-03 | 0.043 |
| Cortex derived primary cultured <u>neurospheres</u> ,<br>H3K4me3  | Central nervous system     | 1.29E-03 | 0.045 |
| Aorta ENTEX, H3K4me1                                              | Cardiovascular             | 1.39E-03 | 0.045 |
| Stomach Smooth Muscle, H3K4me3                                    | Musculoskeletal/Connective | 1.55E-03 | 0.047 |

"Migraine is neurovascular"


Hautakangas et al. Nature Genetics in press

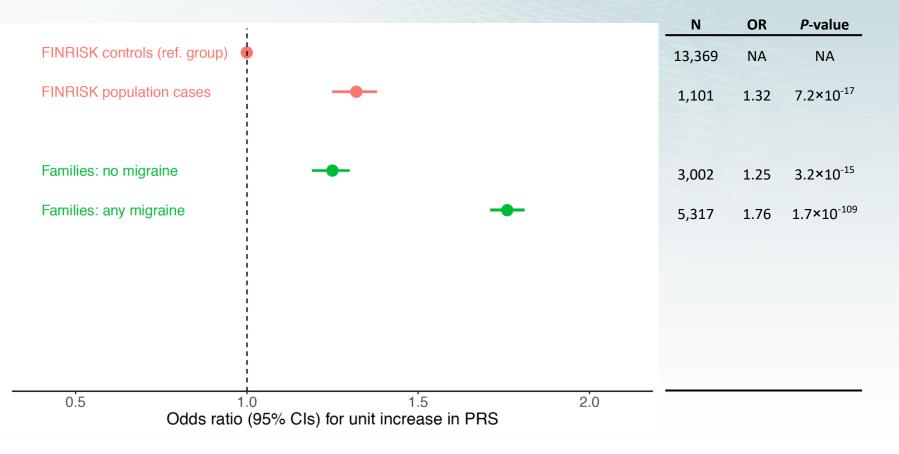
## Polygenic Risk Score PRS


| PRS percentile    | Risk of disease vs.<br>reference group |
|-------------------|----------------------------------------|
| 0-1               | Lowest                                 |
| 1-5               |                                        |
| 5-10              |                                        |
| 10-20             |                                        |
| 20-40             |                                        |
| 40-60 (reference) | 1                                      |
| 60-80             |                                        |
| 80-90             |                                        |
| 90-95             |                                        |
| 95-99             | ŧ                                      |
| 99-100            | Highest                                |

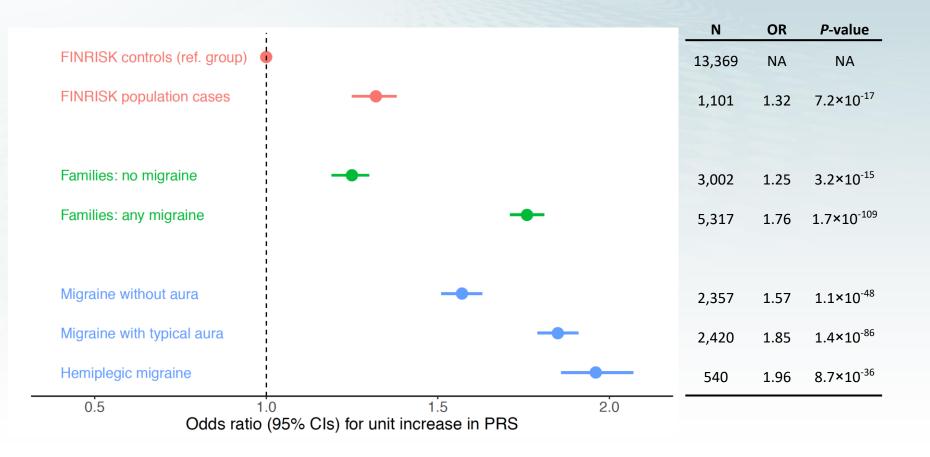


#### Earlier age of onset of headaches corresponds to higher PRS



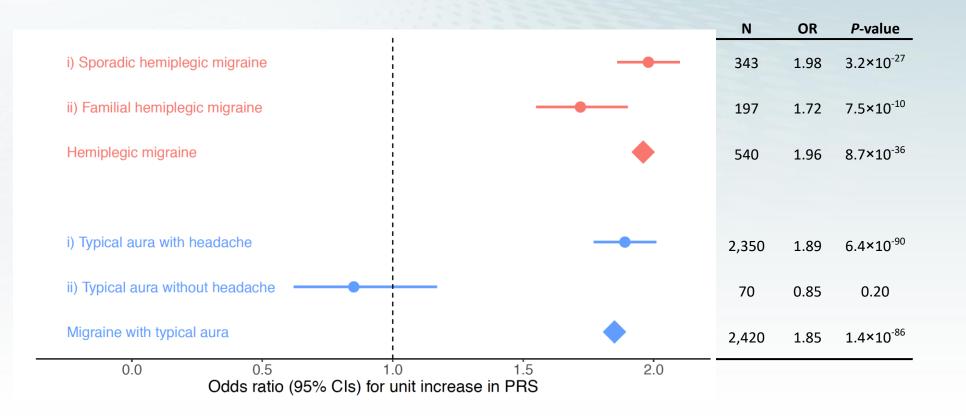

### Population sample – Cases associated with increased burden of common variation



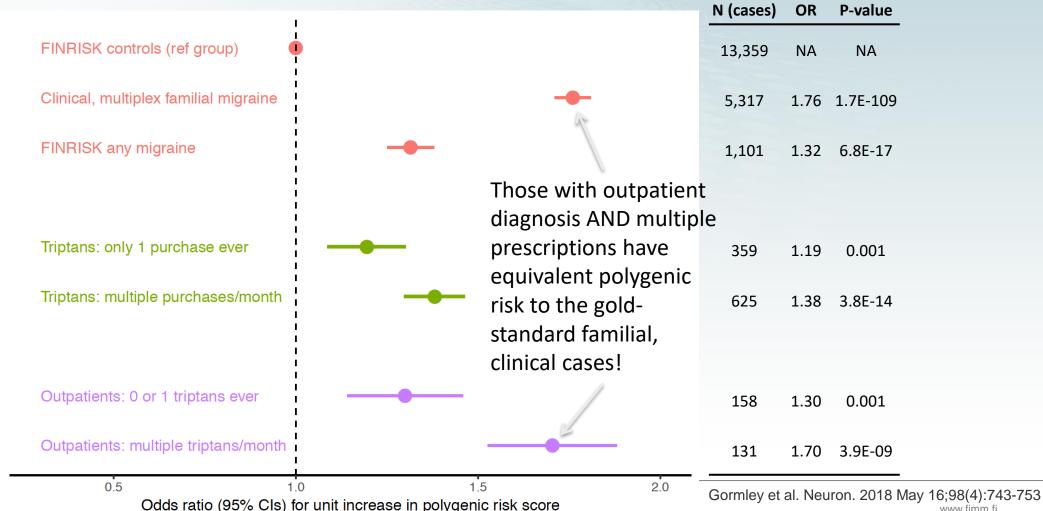

### FIMM

### Family sample – Familial cases significantly higher polygenic load than population

Cases

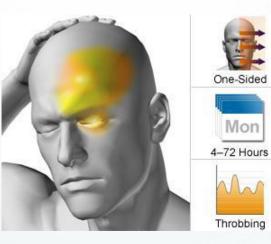



### Subtypes – aura subtypes have higher enrichment than migraine without aura




Hautakangas et al. Nature Genetics in press

### Deeper-level subtypes – Typical aura without migraine headache has very low PRS




## Triptans use and purchase-frequency from registry data is associated with higher polygenic risk scores for migraine



FIM

www.fimm.fi



## RARE

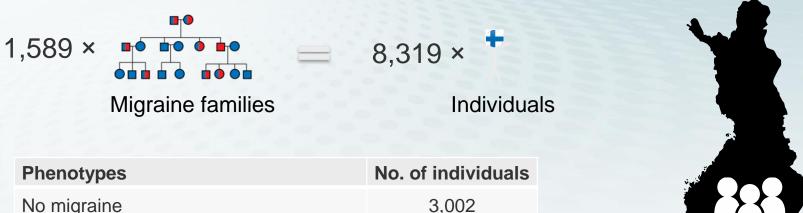
mages,

T

© 2008 Logic






## The Finnish migraine family collection



Padhraig Gormley

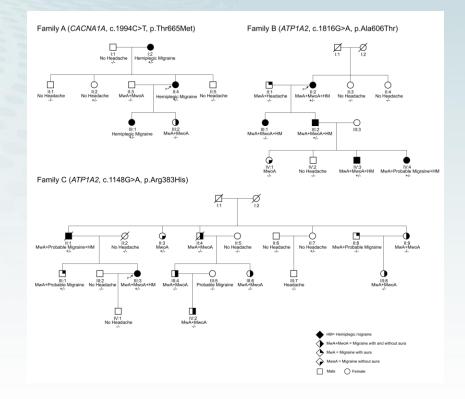


Mikko Kallela



| Phenotypes                                     | No. of individuals |
|------------------------------------------------|--------------------|
| No migraine                                    | 3,002              |
| Any migraine (total)                           | 5,317              |
| <ul> <li>Migraine without aura (MA)</li> </ul> | 2,357              |
| <ul> <li>Migraine with typical aura</li> </ul> | 2,420              |
| Hemiplegic migraine (HM)                       | 540                |




Families collected from **Headache Clinics** throughout Finland

#### Searched for rare variants in known Hemiplegic Migraine genes - found very little

- Exome-sequenced 293 (of 540) HM cases
- Filtered variants for:

FĬN

- LoF/missense variants in 3 known genes (CACNA1A, ATP1A2, SCN1A)
- rare in gnomAD (MAF < 0.01)
- rare in Finland (SISu MAF < 0.01)
- Only found 3 pathogenic variants in 14 cases from 3 families



## **Migraine: Polygenic Architecture**

Neuron *98*, 1-11. May 2018.

#### **Cell**Press

#### Common Variant Burden Contributes to the Familial Aggregation of Migraine in 1,589 Families

Padhraig Gormley,<sup>1,2,3,26</sup> Mitja I. Kurki,<sup>1,2,3,26</sup> Marjo Eveliina Hiekkala,<sup>4,26</sup> Kumar Veerapen,<sup>1,2,3</sup> Paavo Häppölä,<sup>5</sup> Adele A. Mitchell,<sup>6,27</sup> Dennis Lal,<sup>1,2,3,7</sup> Priit Palta,<sup>5</sup> Ida Surakka,<sup>5</sup> Mari Anneli Kaunisto,<sup>5</sup> Eija Hämäläinen,<sup>5</sup> Salli Vepsäläinen,<sup>8</sup> Hannele Havanka,<sup>9</sup> Hanna Harno,<sup>8,10</sup> Matti Ilmavirta,<sup>11</sup> Markku Nissilä,<sup>12</sup> Erkki Säkö,<sup>13</sup> Marja-Liisa Sumelahti,<sup>14</sup> Jarmo Liukkonen,<sup>15</sup> Matti Sillanpää,<sup>16</sup> Liisa Metsähonkala,<sup>17</sup> Seppo Koskinen,<sup>18</sup> Terho Lehtimäki,<sup>19</sup> Olli Raitakari,<sup>20,21</sup> Minna Männikkö,<sup>22</sup> Caroline Ran,<sup>23</sup> Andrea Carmine Belin,<sup>23</sup> Pekka Jousilahti,<sup>18</sup> Verneri Anttila,<sup>1,2,3,5</sup> Veikko Salomaa,<sup>18</sup> Ville Artto,<sup>8</sup> Markus Färkkilä,<sup>8</sup> 23andMe Research Team,<sup>24</sup>, International Headache Genetics Consortium (IHGC), Heiko Runz,<sup>6,28</sup> Mark J. Daly,<sup>1,2,3,5</sup> Benjamin M. Neale,<sup>1,2,3</sup> Samuli Ripatti,<sup>5,25</sup> Mikko Kallela,<sup>8</sup> Maija Wessman,<sup>4,5</sup> and Aarno Palotie<sup>1,2,3,5,29,\*</sup>

*"…a significant contribution of common polygenic variation to the familial aggregation of migraine"* 



© 2017 Broad Institute

### FIMM

Padhraig Gormley



1 11